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The flow field and mixing in an expansion-ramp geometry is studied using large-eddy
simulation (LES) with subgrid scale (SGS) modelling. The expansion-ramp geometry
was developed to investigate enhanced mixing and flameholding characteristics while
maintaining low total-pressure losses. Passive mixing was considered without taking
into account the effects of chemical reactions and heat release, an approximation
that is adequate for experiments conducted in parallel. The primary objective
of the current work is to validate the LES-SGS closure in the case of passive
turbulent mixing in a complex configuration and, if successful, to rely on numerical
simulation results for flow details unavailable via experiment. Total (resolved-scale
plus subgrid contribution) probability density functions (p.d.f.s) of the mixture fraction
are estimated using a presumed beta-distribution model for the subgrid field. Flow
and mixing statistics are in good agreement with the experimental measurements,
indicating that the mixing on a molecular scale is correctly predicted by the LES—
SGS model. Finally, statistics are shown to be resolution-independent by computing
the flow for three resolutions, at twice and four times the resolution of the coarsest
simulation.

1. Introduction

Mixing on a molecular scale of two or more fluids of different composition is
achieved by the action of diffusion. The rate of mixing of different species is of primary
importance in combustion applications because the speed of chemical reactions is
determined by the availability of mixed reactants and the rate of chemical reaction
once the reactants are mixed. For fast kinetics, chemical-product formation is limited
by the molecular mixing rate. Specifically, combustion in non-premixed systems, the
category of flows of interest in this work, can only occur when a mixture of fuel and
oxidizer is homogenized on a molecular scale. Hence, in the present discussion, the
term mixing will refer to molecular mixing of scalar quantities, such as species mass
fractions.

In studies of turbulent mixing, jets and shear or mixing layers (Brown & Roshko
1974; Konrad 1976; Mungal & Dimotakis 1984; Papamoschou & Roshko 1988;
Hermanson & Dimotakis 1989) are two canonical flows that have been used most
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widely. Entrainment and growth rate processes in incompressible shear layers are well
understood (Dimotakis 1986, 1991), despite the fact that prediction of the growth rate
appears to be sensitive to the inflow conditions (e.g. George 1989; Slessor, Bond &
Dimotakis 1998), with important implications for the simulation of such flows. For
incompressible gas-phase shear layers, about half the fluid within the layer is mixed
on a molecular scale (Dimotakis 1991).

Mixing in compressible shear layers has not been as well characterized. The
growth rate of the mixing zone, which sets an upper bound on mixing, decreases
with increasing compressibility (Papamoschou & Roshko 1988; Slessor, Zhuang &
Dimotakis 2000). However, contradictory trends are reported for the dependence
of the fraction of the mixed fluid in the mixing layer on compressibility (Hall,
Dimotakis & Roseman 1991; Island, Urban & Mungal 1996; Freund, Lele & Moin
2000; Rossmann, Mungal & Hanson 2004).

Turbulent jets represent another canonical flow that has been studied. The jet
in crossflow (Pratte & Baines 1967; Andreopoulos & Rodi 1984; Andreopoulos
1985; Smith & Mungal 1998; Shan & Dimotakis 2006) is characterized by higher
entrainment rate than a jet into a quiescent reservoir (e.g. Becker, Hottel & Williams
1967; Dowling & Dimotakis 1990; Miller & Dimotakis 1996). In supersonic crossflow
(Zukoski & Spaid 1964; Spaid & Zukoski 1968; Hollo, McDaniel & Hartfield 1994;
Ben-Yakar, Mungal & Hanson 2006), a bow shock forms, causing the boundary layer
to separate, creating a flameholding region where fuel and air can mix subsonically.
However, this comes at a penalty of high total-pressure losses.

Predictive simulation of turbulent mixing is a valuable tool for understanding the
process of entrainment and the subsequent homogenization of the mixture, especially
in complex flow configurations. In most flows of practical interest, the Reynolds
number is high, well above the mixing-transition Reynolds number (Dimotakis 2000),
resulting in a broad range of spatial and temporal flow scales that place direct
numerical simulation (DNS) beyond practical reach.

Large-eddy simulation (LES) is a method developed to capture the behaviour of
turbulent flows. In LES, large-scale turbulent motions are resolved, whereas scales
below a certain cutoff are modelled. The smallest scales contain only a small fraction
of the turbulent kinetic energy, are more homogeneous and (hopefully) universal and
expected to be less sensitive to modelling assumptions (e.g. Tennekes & Lumley 1972;
Pullin 2000; Pope 2004b).

LES has been successful in the simulation of many non-reacting flows (Lesieur &
Metais 1996; Piomelli 1999; Meneveau & Katz 2000) but the simulation of turbulent
mixing in reacting and non-reacting flows still presents many challenges (Pitsch
2006). Turbulence models for momentum transport rely on theoretical constructs
like the eddy cascade and scale invariance in the inertial subrange. On the other
hand, mixing on a molecular scale takes place only at the smallest scales of the flow
(Dimotakis 1991, 2005; Warhaft 2000) and cannot be resolved by the computational
grid. Therefore, LES models must ‘infer’ subgrid mixing based on the resolved scales.
Turbulent mixing in reacting flows presents additional challenges because mixing
produces changes in the composition of the fluid that can change the dynamics of
the flow.

A large part of previous work on LES of passive-scalar mixing in spatially
developing flows focuses on turbulent jets. Akselvoll & Moin (1996) and Pierce &
Moin (1998) conducted LES of passive-scalar mixing of turbulent confined coannular
jets employing the dynamic Smagorinsky model (Smagorinsky 1963; Germano
et al. 1991; Moin et al. 1991). Le Ribault, Sarkar & Stanley (2001) simulated
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passive-scalar mixing in a plane jet and a shear layer (Le Ribault 2008) using the
dynamic Smagorinsky and the dynamic mixed model, a combination of a Smagorinsky
and a scale-similarity closure for the subgrid scalar flux. Sankaran & Menon (2005)
conducted LES of scalar mixing in a supersonic shear layer using the dynamic
Smagorinsky and the linear eddy model (Kerstein 1988). In these computations,
the mean scalar field is well predicted. However, this is a measure of entrainment
rather than mixing (Shan & Dimotakis 2006). Regarding mixing statistics, Le Ribault
(2008) reports non-marching probability density functions (p.d.f.s) of the mixture
fraction for incompressible shear layers but marching p.d.f.s for a compressible shear
layer with a convective Mach number (Papamoschou & Roshko 1988) of M. =1.1.
Sankaran & Menon (2005) also report marching p.d.f.s for a shear layer with a
supersonic top stream and M. =0.62. Experimental measurements in incompressible
shear layers show non-marching p.d.f. behaviour (Konrad 1976; Koochesfahani &
Dimotakis 1986), while measurements in supersonic mixing layers show marching
p.d.f. behaviour for M. > 0.6 (Clemens & Mungal 1995). However, in supersonic
shear layers measurements are more challenging and fewer studies have reported
mixing p.d.f.s.

Burton (2008b) simulated high Schmidt number (Sc=1024) scalar mixing in a
round jet using the nonlinear LES method (Burton 2008a). Burton (2008b) reports
k~! scaling for the passive scalar in the viscous-convective range; however, the jet
Reynolds number is relatively low, Re =2000. Moreover, in these computations, the
scalar field is unresolved whereas the velocity field is resolved.

In the present work, turbulent mixing of a passive scalar in an expansion-ramp
injection geometry is modelled using the stretched vortex LES—SGS model (Lundgren
1982; Voelkl, Pullin & Chan 2000; Pullin 2000; Pullin & Lundgren 2001). The details
of the flow configuration are described in §2. The simulations correspond to a set
of experiments conducted in parallel (Johnson 2005; Bergthorson et al. 2009). The
experiments in the expansion-ramp geometry provide a framework for the assessment
of subgrid scale models for turbulent momentum and species mixing. Accordingly, the
primary objective of the current work is to validate the particular LES-SGS closure in
the case of passive turbulent mixing in a complex configuration. Central questions in
this study are whether the LES model, which does not resolve the smallest flow scales,
can accurately predict mixing on a molecular scale, and if turbulence statistics become
grid-resolution independent for sufficiently refined grids. Although when modelling
the experiments some simplifications must be made in order to make the problem
computationally tractable, the modelling choices were made in such a way that their
effect on the prediction of the flow statistics can be assessed.

2. The expansion-ramp injection geometry

In practical combustion devices, the conversion of chemical to mechanical energy
must often satisfy conflicting requirements. Performance considerations mandate high
mixing efficiency, while regions of strain rate lower than the extinction strain rate
of hydrocarbon fuels are required to sustain combustion (e.g. Williams 1985). In
aerospace applications, low total pressure losses are an additional requirement for
high propulsion efficiency.

The expansion-ramp geometry combines the low strain-rate flameholding
characteristics of backward facing steps (Eaton & Johnston 1981), with low total
pressure losses of free-shear layers (Johnson 2005; Bergthorson et al. 2009; Bonanos,
Bergthorson & Dimotakis 2009). The geometry was developed to study mixing and
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FiGURE 1. Comparison of the flow configuration in the expansion-ramp geometry, (c) and
(d), with the flow in a shear layer (a) and a backward-facing step (b). For low bottom-to-top
mass injection ratios (c), the flow is deflected upstream in the recirculation region and the
upstream-moving fluid forms a secondary shear layer where the ramp meets the bottom
guide wall. When the bottom-stream mass flux is increased (d), the reattachment is pushed
downstream. As a result, the recirculation region and secondary shear layer are not formed.

combustion in a configuration that is relevant to supersonic ramjet combustors
(Curran & Murthy 2000; Curran 2001). In figure 1, sketches of the flow configuration
in the expansion-ramp geometry are compared with the flow in a shear layer (figure 1a)
and a backward-facing step (figure 1b).

In the expansion-ramp configuration, the top high-speed stream is expanded over
a ramp at 30° with respect to the horizontal plane. The bottom stream is injected
through perforations in the expansion ramp. From an application point of view, the
top stream carries the oxidizer (air) and the bottom stream the fuel, or a mixture of
fuel and oxidizer. Similar to the case of flows over backward-facing steps for subsonic
and transonic top streams, the flow separates at the end of the splitter plate, where the
expansion begins, and forms a shear layer. This is identified as the primary shear layer
in the expansion-ramp configuration. When the bottom-stream flow cannot satisfy the
entrainment requirements of the primary shear layer, the shear layer curves towards
the bottom guide wall and reattaches (figure 1c), similar to the behaviour observed
in a backward-facing step.

Within the reattachment region on the bottom wall, the shear layer splits and part
of the flow is deflected upstream into the recirculating flow region formed between
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the ramp and the reattachment zone. The deflection of the shear layer upstream is
similar to the re-entrant jet formed at the end of a cavity (Knapp, Daily & Hammitt
1970; Callenaere et al. 2001). In a reacting flow, the re-entrant jet carries hot products
and radicals upstream that mix with bottom-stream fluid forming a secondary shear
layer where the ramp meets the bottom guide wall. This second mixing layer allows
products to further mix with the bottom-stream fluid. The recirculating region, re-
entrant jet and the secondary shear layer lead to enhanced mixing compared to a
free-shear layer, while providing a low strain-rate environment that is important for
flameholding (Johnson 2005; Bergthorson et al. 2009; Bonanos et al. 2009).

The length of the recirculation zone can be controlled through variation of the
mass-injection ratio of the two streams. Increasing injection pushes the reattachment
downstream leading to a change in the pressure coefficient at a given streamwise
location. For high mass-injection ratios, the flow becomes similar to a plane shear
layer. In this case, the recirculation region and secondary shear layer are not formed
(figure 1d). In a reacting flow, heat release in the mixing layer has the same effect
as increasing the mass flux of the bottom stream because of the reduced volumetric
entrainment of free-stream fluid (Hermanson & Dimotakis 1989; Johnson 2005).

3. Description of the experiments

The simulations discussed in this study correspond to the experiments documented
by Johnson (2005) and Bergthorson et al. (2009). A brief description of the experiments
is presented here in order to facilitate the comparison between experiments and
simulations. Further details can be found in Johnson (2005) and Bergthorson et al.
(2009).

The experiments were performed in the supersonic shear layer (S’L) laboratory at
Caltech (Hall et al. 1991). The top stream is delivered from a large pressure vessel
using a control program to maintain constant pressure in the upstream plenum and
can reach flow speeds up to Mach numbers, M; ~3.2. The bottom stream has a
constant mass flux, metered using a calibrated sonic valve. The two streams are
accelerated through converging nozzles designed to minimize the boundary-layer
thickness on the splitter plate and turbulence generation at the design Mach number.
The bottom stream is injected through a perforated expansion ramp angled at o = 30°
with respect to the horizontal. The ramp is perforated with 3611 1.55 mm diameter
holes, corresponding to an open-area fraction of 0.60. The test section height is
2h =0.1 m, with the individual stream heights being 4. The nominal run time in the
facility can range between 2 and 6 second, depending on upper-stream Mach number.

The free streams have a chemical composition consisting of a mixture of H, +
NO + diluents (top) and F, + diluents (bottom) designed to study the mixing in the
expansion-ramp configuration. The remainder of the gas in both streams is comprised
of helium, argon and nitrogen inert diluents, chosen to match the molar mass and
specific heat ratio of the two streams. Nitric oxide is added to the hydrogen stream
to generate radicals that facilitate reaction when brought in contact with fluorine
(Mungal & Dimotakis 1984). The reaction then becomes hypergolic and proceeds
without an ignition source at room temperature.

Flow-field measurements are obtained by pressure taps along the bottom and top
guide walls, and a measurement rake that can be placed at distances L,=7h-9h
downstream of the splitter plate. Temperature and total and static pressures are
measured at the rake through an array of thermocouple and pressure probes. In
addition to temperature and pressure data, schlieren flow visualization is utilized as a
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FIGURE 2. Schlieren visualization of the flow in the expansion-ramp geometry from the
experiments of Johnson (2005). In both panels, the top-stream speed is U; ~120 ms~!. In
(a), the bottom-stream ramp-injection speed is Uz ~ 5.5 ms~! and in (b), Ur ~12.5 ms~'. The
primary and secondary shear layers are clearly visible for low mass-injection in the bottom
stream (a). At higher injection (b), the recirculation zone extends downstream, eliminating
the secondary mixing layer. Top-stream composition is N, and bottom-stream is Ar:He =2:1
(non-reacting flow).

concurrent non-intrusive diagnostic. Figure 2 shows schlieren images of the flow for
two mass-injection ratios (Johnson 2005). The primary and secondary shear layers
are clearly visible in the low mass-injection case.

The amount of molecularly mixed fluid is estimated using the ‘flip’ experimental
technique (Mungal & Dimotakis 1984; Koochesfahani & Dimotakis 1986). Mixing is
computed from a pair of chemically reacting experiments. In one of the experiments,
the top stream is rich in its reactants whereas in the other the compositions are “flipped’
so that the bottom stream is rich in its reactants. Recording the temperature rise
that accompanies the chemical-product formation allows the amount of molecularly
mixed fluid to be inferred. In this technique, the measurements are not affected by
limitations in spatial resolution since only fluid mixed on a molecular scale reacts
and contributes to the temperature rise, which can be measured accurately using an
array of thermocouples.

Estimating mixing from a ‘flip’ experiment relies on two underlying assumptions:
that the experiments are performed in the mixing-limited regime and that the flow
in the pair of experiments remains unchanged as the temperature field changes. The
first assumption is validated by verifying that the Damkohler number, Da =7, /7,,
the ratio of the mixing time scale to the chemical time scale, is sufficiently large. The
chemical time scale is estimated using the ‘balloon-reactor’ model of Dimotakis & Hall
(1987). The studies of Hall et al. (1991), Slessor et al. (1998) and Bond (1999) have
shown that the flow is mixing-limited when Da > 1.5. In the experiments considered
here, this condition is always satisfied. The assumption that the flow must remain
unchanged in the pair of experiments is assessed by examining the stagnation pressure
profiles recorded along the measurement rake (Johnson 2005). The flow is deemed
matched if the stagnation pressure profiles do not change.

4. Numerical modeling
4.1. Governing equations

The Favre-filtered (density-weighted) compressible Navier—Stokes equations are used
in the large-eddy simulation. The Favre-filtered quantities are defined as

7

E, (4.1)
P
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for an arbitrary field f, where p is the density. The overbar indicates the filtering
operation

flx, )= /G(x —x')f(x', t)dx', (4.2)

with a convolution kernel G(x) (Leonard 1974).

The degree of mixing in the expansion-ramp geometry is parameterized in terms of
the mixture fraction Z. In the experiments, the rate of the chemical reactions is fast
and the heat release is low. The adiabatic flame temperature rise is about 94 K for a
mixture of 1% H; in the top stream and 1 % F, in the bottom stream, both diluted
with N, (Johnson 2005), resulting in an approximately isothermal (low heat-release)
chemical reaction. Therefore, a passive-scalar approximation is appropriate, the mixing
problem reduces to the evolution of a conserved scalar Z, and most quantities of
interest can be expressed as functions of Z. This approximation neglects any effects
resulting from variable-transport properties, such as double-diffusion effects at the
smallest flow scales.

The conservation equations for mass, momentum, energy, and a passive scalar are,
respectively,

ap  dpil;
= =0, 43
ot 8xi ( )
8,(—)1/7, + a(f)ﬁ,ﬁj +]_78,]) _ @ B afij ’ (44)
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The subgrid terms, 7;;, ¢; and g;, represent the subgrid stress tensor, and the heat and
scalar transport flux, respectively. The filtered total energy per unit volume, E, is the
sum of the internal and kinetic energy (resolved and subgrid),

v

F:
y—1

1 1
+ Eﬁ(ﬁiﬁi) + 5T (4.7)

where the filtered pressure, p, is determined from the ideal-gas equation of state

b =pRT. (4.8)

Since the fully resolved fields are not available in LES, the filtering operation
(4.1) is purely formal and only used to construct the LES equations. The subgrid
terms cannot be evaluated using information derived from the resolved scales and a
model, or additional information, is required to approximate them. Integration of the
LES equations will yield the time evolution of the resolved fields. Any instantaneous
realization of the resolved field carries limited information, not only because of the
aforementioned characteristics of the modelling, but also because of the random
nature of the turbulent flow dynamics. Therefore, one is primarily interested in the
statistics of the resolved field and, through the use of models for the unresolved field
structure, in pointwise quantities, such as the amount of mixed fluid on a molecular
scale. A more detailed discussion on the conceptual foundations of LES can be found
in Pope (2004a).
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4.2. Subgrid closure

The subgrid turbulent transport terms are computed using the stretched-vortex
subgrid scale (SGS) model of Pullin et al., originally introduced for incompressible
LES (Misra & Pullin 1997; Voelkl et al. 2000), and subsequently extended to
compressible flows (Kosovic, Pullin & Samtaney 2002) and subgrid scalar transport
(Pullin 2000; Pullin & Lundgren 2001). The stretched-vortex model utilizes turbulence
flow physics ideas, considering the turbulent region as an ensemble of vortex filaments
with their own dynamical statistics. Averaging these vortex filaments produces the
subgrid stresses. The model can provide estimates of subgrid-scale quantities, such
as the SGS kinetic energy and mixture-fraction variance, in a self-consistent manner
with the SGS closure. This multiscale characteristic of the SGS model is particularly
advantageous for turbulent mixing modelling. Moreover, encouraging results in
predicting turbulent flows in previous studies is another reason leading to the choice
of the stretched-vortex model in the present study.

Modelling of the subgrid transport terms relies on two main assumptions: an
assumed structure of the subgrid flow field, including the passive scalar field, and
an estimate of the local subgrid kinetic energy. The subgrid field is assumed to be
produced by an ensemble of nearly axisymmetric vortical structures that remain
straight, but whose orientation and stretching is governed by the dynamics of
the resolved field. The resulting expression for the subgrid tensor depends on the
three-dimensional energy spectrum of the vortex, E(k), and the distribution of the
orientation of the vortical structures (Pullin & Saffman 1994), and is given by

T =2p / E(k)dk(E ;i Z,4Ey;). (4.9)

/A

where E,; is the transformation matrix from the vortex fixed to the laboratory frame
of reference, Z,, is a diagonal matrix with the elements (1/2, 1/2,0) and (E,; Z,, E,;)
denotes the average over the orientations of the vortex structures.

In the implementation of the stretched-vortex model used in this work, it is assumed
that the subgrid field is produced by a single vortex aligned with the largest extensional
eigenvector of the resolved rate of strain tensor, S;;. This is equivalent to assuming
that the subgrid field responds instantaneously to forcing of the smallest resolved
scales. The alignment of the subgrid vortex with the most extensional eigenvector of
the resolved rate of strain tensor, Sij (Kosovic et al. 2002), corresponds physically
with alignment of the actual vorticity of the vortex filaments with the intermediate
principal direction of §;; (e.g. She, Jackson & Orszag 1990).

Defining e = [e1, e, e3] as the unit vector of the subgrid vortex axis, the resulting
expressions for the subgrid tensor and fluxes are given by

T = pK(8i; — eiej), (4.10)
A e, T
g =—p=K"(8; — €iej)a(Cp ), (4.11)
2 0x;
A 37

J

where A is the subgrid cutoff scale, here taken to be equal to the grid spacing Ax.
The largest resolved wavenumber is then k. =m/A. K denotes the subgrid kinetic
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energy per unit mass:

_ [ dk. 413
K /kE(k)k (4.13)

The SGS scalar-mixing model, which is of particular interest here, is based on the
asymptotic solution for the winding of the scalar field by the subgrid vortex (Lundgren
1982; Pullin 2000; Pullin & Lundgren 2001). The subgrid vortex orientation is dynamic
and results in anisotropic SGS mixing of the scalar by the vortex in the form of a
tensor-eddy diffusivity model for the SGS scalar flux (4.12).

The three-dimensional energy spectrum of the subgrid Lundgren spiral vortex
(Lundgren 1982) is given by

E(k) = A5 ¥k Pexp[—2k*v/(3|&|)], (4.14)

where ' is the Kolomogorov prefactor, € is the local cell-averaged dissipation rate,
and
o= S‘,-je,-ej (415)
is the axial strain along the subgrid vortex axis.
The final step in determining the expressions for the subgrid terms is to estimate
the product #;€*?. This provides closure and determines the value of the subgrid

kinetic energy using the local, resolved-scale, second-order velocity structure function
F>(r;x) (Metais & Lesieur 1992; Voelkl et al. 2000):

F
2/3 2
Ho € AN (4.16)
with
A= 4/ 553 (1 Sms) ds ~ 1.90695. (4.17)
0 h)
A local (discrete) spherical average is used to estimate F,
3
B(A;x) = ¢ Z Sit? + 8iiy” + 857 + 801" + 8iiy” + 8057) (4.18)
where
8it = iij(x + AX ;) — iii(x) (4.19)

is the velocity difference of component u; in direction x; at x. This allows the SGS
terms to be estimated dynamically using only the local 1nstantaneous resolved fields
without performing any temporal or spatial averages.

4.3. Solution of the discrete equations

The discretization of the LES equations is of particular importance in simulations of
turbulent mixing, because it can affect the characteristics and quality of turbulence
modelling. In the approach followed here, the system of equations is comprised of
the resolved-fields part and the model terms for the subgrid physics. This method of
using an explicit model to capture the effects of the unresolved motions is referred to
as pure physical LES by Pope (2004a).

The conservation equations are discretized on a regular Cartesian mesh using the
second-order accurate, collocated tuned centre-difference (TCD) scheme of Hill &
Pullin (2004). The centre-difference scheme uses a bandwidth-optimized five-point
stencil constructed to minimize the spatial truncation error for the Navier—Stokes
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FiGURE 3. Schematic showing a two-dimensional computational grid intersected by a level set
defined boundary, 02 (thicker line). The grid is divided in two regions: the physical domain
(£27) and the ghost fluid (£2,). Filled black circles denote the band of cells adjacent to the
boundary that have to be populated by the ghost fluid method, assuming here that the width
of the stencil is 5 cells. The mirror points, xg, of x,, with respect to the boundary, are also
shown (squares) for some of the ghost cells.

equations for a von Karman spectrum (Ghosal 1996, 1999). The approximation of
the spatial derivatives introduces no artificial dissipation and no explicit filtering of
any kind is performed.

The finite differences are implemented with conservative flux-based discretizations
(Rai 1986) and formulated in energy-conserving (skew-symmetric) form (Piacsek &
Williams 1970; Zang 1991; Honein & Moin 2004), with stable boundary closures
(Strand 1994). Since the difference scheme is strictly non-dissipative, the skew-
symmetric formulation for the momentum and scalar advection terms is essential in
controlling potential nonlinear numerical instabilities. Inflow and outflow boundary
conditions on planes aligned with the grid are implemented in characteristic form,
as suggested by Thompson (1987) and Poinsot & Lele (1992). A third-order strong-
stability-preserving (SSP) Runge—Kutta method (Gottlieb, Shu & Tadmor 2001) is
used for time stepping. The numerical method is discussed in detail in Hill & Pullin
(2004) and Pantano et al. (2007).

The compressible-flow solver excluding the subgrid terms was verified using several
test cases. Verification tests included convergence studies using simple exact solutions
of the Euler equations, computation of the observed order of accuracy for problems
without an exact solution, and a comparison to linear-stability analysis solutions for
compressible shear layers is described in Matheou, Pantano & Dimotakis (2008).

4.4. Implicit geometry representation

Geometrical features of the computational domain that are not aligned with the
regular Cartesian mesh are implicitly represented by a level-set function (Osher &
Sethian 1988), ¢(x). Figure 3 shows a configuration of a two-dimensional grid



LES of mixing in a recirculating shear flow 385

intersected by the contour of ¢(x, y) =0, which defines the boundary of the physical
domain 9£2;.

The vector of state in the ghost cells in a thin layer adjacent to the boundary
is prescribed to satisfy the boundary conditions. This method was first introduced
by Fedkiw et al. (1999) in the context of the compressible Navier—Stokes equations
and is known as the ghost fluid method (GFM). The band of cells modified in the
ghost fluid is chosen to be wide enough to ensure that stencils centred on cells in the
physical domain will not reach beyond this band of ghost cells.

For the current simulations, two types of boundary conditions are imposed: a
no-penetration condition on solid walls (slip wall) and an inflow condition for the
injection ramp. The linear extrapolation or mirroring described in Arienti et al. (2003)
is used to populate the ghost cells in the case of the no-penetration condition.

The perforated ramp is modelled as a uniform subsonic inflow to avoid the
resolution requirements imposed by the fine scales of the small holes present in
the perforated plate. In this case, the ghost cells are filled with values corresponding
to a prescribed mass flux through the subsonic-inflow plane similar to the method
described in Wesseling (2001) to account for the outgoing characteristic.

In the experiments, the mass flux through the ramp is fixed by a sonic valve
supplying an upstream plenum. Therefore, the density and the velocity vector in
the ghost cells are set to constant values corresponding to the set mass flux of the
bottom stream. An extrapolation along the outgoing characteristic is carried out to
completely determine the vector of state in the ghost cells. The conservative vector of
state

U =I[p, pui, pus, pus, E, pZ]" (4.20)

must be prescribed inside the ghost fluid. For the calculation of the total energy in
the ghost cells, first the outgoing Riemann invariant is considered,

%5=M-|-

c, (4.21)
y—1
where ¢ is the speed of sound and u is the velocity component normal to the inflow
boundary. The speed of sound in the ghost cell is

y—1 2
Y S + = o —uy 4.22
Cg 3 (“g Y lcg Ug ) ) ( )

which is used to compute the total energy

1 1
E, = p, L/(y_l)cé + 3 (M§ + v§ + wé)} , (4.23)
where v and w are the two components of the velocity vector tangential to the
boundary.

The flow solver described, including the SGS model and the GFM implementation,
exists at the bottom of a computational framework called AMROC (Deiterding
2003, 2004) that provides a generic infrastructure for the solution of hyperbolic
problems, message-passing in parallel computer architectures and handles most of the
10 responsibilities in a relatively transparent manner.

5. Simulations

Two sets of simulations were conducted to study the dependence of flow
characteristics on inflow conditions and grid resolution. In the first group, the flow



386 G. Matheou, A. M. Bonanos, C. Pantano and P. E. Dimotakis

FiGURe 4. Computational domain configuration.

conditions remain unchanged while the grid is refined, whereas in the second group,
the effect of variable mass injection is considered for two different mass-injection
ratios at a fixed top-stream velocity. In all cases simulated, the flow is treated as
compressible but is subsonic with top-stream Mach numbers of 0.35 or 0.5.

The two streams are assumed to be of the same gas with constant specific heats
ratio, y = 1.4. The dynamic viscosity, u, is assumed to be constant (independent of
temperature), the Prandtl and Schmidt numbers are also constant and equal to the
corresponding molecular diffusivity values of Pr=0.7 and Sc =1, respectively.

The computational domain has dimensions L, x L, X L., in the streamwise,
transverse and spanwise directions, respectively, with uniform grid spacing in all
dimensions. The top-stream inflow boundary is at distance L; upstream of the end
of the splitter plate, as shown in figure 4. In all simulations, L, =L, =2h. In the
spanwise direction, the flow is assumed to be statistically homogeneous and periodic
boundary conditions are used. For reference, the spanwise extent of the test section
in the experiments is 3h. All lengths reported are normalized by the step height
h=0.05 m.

A Reynolds number is defined based on the velocity difference between the top free
stream, Uj, and the velocity magnitude on the ramp, Uy, the step height, &, and the
upstream density, py,

Re = (U1—UR)h'01'
7
The velocity Uy is obtained from the mass flux of the bottom stream after dividing

by the density and the area of the ramp, in accord with the definition of Uy in the
experiments. Table 1 summarizes the conditions for the different cases simulated.

(5.1)

5.1. Initial condition
The flow was initialized with a hyperbolic-tangent velocity profile, given by

u(y) = Umn(y — h) + uz(1 —n(y — h)), (5.2)
where u, is the streamwise component of Ui and,
1
n(y) = E(l + tanh(ay)). (5.3)

The parameter « is chosen such that the 99 % half-thickness of the shear layer, 4,
defined as

U, — M(S)

——> =0.01, 5.4

o (54)

is 10 % of the step height: § =0.1A.
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Case Al A2 A3 B2 C2
M, 0.35 0.35 0.35 0.5 0.5
U; (ms™) 120 120 120 170 170
Mg /My 0.09 0.09 0.09 0.11 0.23
Re 3.8 x10° 3.8 x10° 3.8 x10° 5.5%x10° 4.8 x10°
Ax/h 1/20 1/40 1/80 1/40 1/40
L./h 22 22 22 25 25
Ly/h 2 2 2 2 2
L./h 2 2 2 2 2
Li/h 2 2 2 1 1

Number of cells 0.7 x 106 5.4 x10° 43.1 x 109 6.3 x 10° 6.3 x 10°

TaBLE 1. Conditions for the cases simulated.

In the simulations, the initial condition is ‘washed out’ and it does not affect
the collected statistics since subsequent realizations depend only on the boundary
conditions. All flow statistics are collected after the first three ‘flow-through’ times,
defined as t. = (L, — L;)/ U,, to allow for the flow to become uncorrelated from the
initial condition. U, is the average exit velocity defined as
my + g

U, = .
p1L Ly

(5.5)

5.2. Boundary conditions

Two important aspects of the numerical modelling employed in this study are
associated with the choice of boundary conditions: the ability to integrate for long
times (time stability) and the treatment of solid boundaries (walls). The first problem
was addressed by utilizing characteristic boundary conditions. The second problem
concerns the resolution of the turbulent boundary layers that develop on the bottom
and top guide walls. These present a severe computational challenge. The Reynolds
number based on the distance from the inlet to the downstream boundary is of the
order of a million. Even though in the context of the SGS modelling methodology the
resolution requirements can be significantly reduced compared to direct simulation
(e.g. Pantano et al. 2008), there is an additional modelling challenge that arises from
the unsteady three-dimensional character of the flow near the reattachment of the
shear layer. So far, very few LES results for three-dimensional turbulent boundary
layers (3DTBL) have appeared in the literature. The work of Kannepalli & Piomelli
(2000) provides one example.

To mitigate the aforementioned difficulties introduced by the no-slip condition
on the solid boundaries, the bottom and top guide walls and the splitter plate are
assumed to be stress-free, adiabatic boundaries, enforcing only the no-penetration
(free-slip) condition

5=0, a0y, (5.6)

and
oE
0
dy
Although at the high Reynolds numbers of interest, the boundary-layer thickness
remains small compared with the duct height and does not directly affect mixing,

(5.7)
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the possible separation of the flow on the top guide wall in the adverse pressure
gradient region downstream of the reattachment can affect the large-scale flow,
potentially altering the overall mixing. This is the most significant of the modelling
simplifications introduced in the simulations. Its impact on the prediction of the flow
and mixing performance in the geometry will be assessed in the analysis of the results.

The top-stream inflow velocity profile is assumed to be of the form of a mean field
that is only a function of the transverse coordinate, with a superimposed perturbation,

u(t,x,y,z) =Uly) +u'(t, x,y,2) (58)

The mean velocity profile, U(y), has the hyperbolic-tangent form of (5.2) for y > h.
This corresponds to a top-stream boundary-layer thickness that is about four times
larger than that in the experiments. The perturbation is of the form

w'(t,x,y,z) = f(y)expli(Uitk: + (y — h)ky + zk)], (59)

with
f(y) = exp(—B(y — h)*) tanh(2a(y — h)). (5.10)
The parameters o and B are chosen such that the magnitude of the perturbation is

5% of the free-stream velocity U; and its thickness is the same as the thickness of
the hyperbolic-tangent profile of (5.2). The additional constraints

V-u' =0, (5.11)
v =w, (5.12)
and
ke =k, =k, (5.13)
are also imposed, with
4n
ky = —. 5.14
. (5.14)

Because a free-shear layer is convectively unstable, inflow forcing contributes to a
faster development of the instability and provides a surrogate model for the role that
the turbulent boundary layer that forms on the top wall of the splitter plane plays in
the experiments. The wavenumber used in the forcing was chosen from several values
tried in simulations of flows over backward-facing steps and with ramp injection
resulting in the fastest growth of the instability.

The density and static pressure at the inflow are uniform. The top stream is assigned
a mixture-fraction value of Z =1 and the bottom stream, Z =0. At the outflow, the
incoming acoustic characteristic method of Rudy & Strikwerda (1981) is used. The
reference pressure is set to be atmospheric pressure approximating the experiments
in which the test section discharges to atmospheric conditions.

The flow through the ramp is assumed to be uniform, because the computational
grid cannot resolve the geometry of the perforations, with the mass flux matched to
the measured value. The assumption of uniform inflow causes a small discrepancy in
the momentum flux through the simulated ramp compared with the experiment; the
average momentum of the jets emanating from the perforations is different from the
momentum of the matched average mass flux. Moreover, the jets that emerge from
the perforations may have an effect on the development of the instability
characteristics on both the primary and secondary shear layers that are not reproduced
in the present simulations.
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FIGURE 3. Instantaneous mixture-fraction iso-surfaces for Case A2. Iso-surfaces correspond to
Z =0.8 (red), Z=0.5 (green) and Z =0.2 (blue). Note the large spanwise-organized structures
in the primary shear layer. Supplementary movies 1-3, available at journals.cambridge.org/flm,
show animations of the mixture-fraction iso-surfaces for Cases A1-3, illustrating the unsteady
flow characteristics and the effect of grid-resolution on the spatial structure of the flow.

5.3. Flow-field characteristics

The instantaneous mixture-fraction fields in figures 5 and 6 show spanwise-organized
structures, similar to the ones observed in free-shear layers and the experiments
of Johnson (2005) and Bergthorson et al. (2009). The primary shear layer appears
more two-dimensional than the secondary because of the unsteady three-dimensional
character of the flow in the recirculation region. The unsteady, complex nature of
the flow is also illustrated in figure 7, where contours of the streamwise velocity
corresponding to the mixture-fraction field of figure 6 are plotted. The recirculation
region is comprised of several pockets of upstream-moving fluid, some of them not
extending through the entire span. From the contour plots of instantaneous velocity
and mixture-fraction fields, it appears that the large structures of the primary shear
layer have a significant effect on the flow in the recirculation region. Supplementary
movies 1-3, available with the online version of the paper, show an animation of
the mixture-fraction field for the three resolutions used in Cases A1-A3, where the
unsteady features of flow and resolution effects are better illustrated.

Before averages of the time-dependent flow fields are considered, the assumption
of quasi-steady state is assessed. Improper boundary closures can result in a drift of
mean quantities in the computational domain (Poinsot & Lele 1992), in which case
statistics will not converge over time. For all the simulations performed, the average
pressure and u-velocity on planes normal to the streamwise direction near the inflow
of the top stream and the outflow were recorded as a function of time. In this manner,
at least this aspect of the boundary closure is verified for this turbulent flow and the
effect of the injection of the bottom stream through the ghost fluid is evaluated.

Figure 8 shows plane-averaged pressure at the inflow and outflow as a function of
time. The pressure trace at the outflow fluctuates as a result of large-scale structures
crossing the plane where the average is computed. As the structures exit the domain,
they generate disturbances that travel upstream and exit through the inflow boundary.
The upstream-travelling pressure waves are recorded in figure 8 as the fluctuations
of the pressure trace at the inflow. Similar behaviour for free-shear layers has been
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FIGURE 6. Instantaneous mixture-fraction contours on the mid-span plane (a) and bottom
wall for Case A3. Black contour corresponds to the value of zero streamwise velocity. The
flow is moving upstream in regions between the black contour and the bottom wall or when
surrounded by the black contour. The corresponding u-velocity field is shown in figure 7.
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FIGURE 7. Instantaneous streamwise velocity contours on the mid-span plane (a) and bottom
wall for Case A3 at the same time as for the mixture-fraction field as in figure 6. Black contour
corresponds to the value of zero streamwise velocity.

observed experimentally (Dimotakis & Brown 1976; Hall 1991) and is one of the
factors that contribute to the generation of the instability of the primary shear layer.

In order to remove the fluctuating part of the pressure traces, a rolling average
is employed with a period of three convective times (7,oy.qve. =3%). The flow
configuration, for the values of relatively small injection velocities studied, acts as a
diffuser. The velocity profile at the outflow becomes more uniform compared with
the inflow and the static pressure increases, as can be seen from the rolling averages
of pressure in figure 8. The average outflow pressure remains constant with time at
a value slightly above 10° Pa. Note also that the average inflow pressure remains
practically constant for the duration of the simulation after the short initial transient.

6. Grid-refinement study

Grid resolution, or the turbulence-resolution scale, is an important parameter in
LES (Pope 2004a). For sufficiently refined calculations, a predictive LES model should
yield turbulence statistics that are independent of grid resolution. Given that for a
specific turbulence model and discretization the turbulence statistics exhibit good
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FIGURE 8. Plane-averaged inflow and outflow pressure as a function of time for Case A2.
Thin lines denote pressure averaged over planes normal to the streamwise direction near the
inflow and outflow. Outflow pressure is always higher than the inflow. Thick lines are a rolling
average of the pressure traces with an averaging period of 3z.

resolution independence, a secondary question is what are the necessary resolution
requirements.

Resolution studies in LES can be comparisons of statistics with DNS data (e.g.
Vreman, Geurts & Kuerten 1996; Meyers, Geurts & Baelmans 2003) or sensitivity
studies with respect to grid-resolution (e.g. Stevens, Ackerman & Bretherton 2002;
Bryan, Wyngaard & Fritsch 2003). The effect of numerical discretization errors and
the interaction of such error with the modelling error have also been documented in
these and other studies (Ghosal 1996; Vreman et al. 1996; Bryan et al. 2003). In the
results reported here, the effect of grid spacing on the prediction of the mean fields
and the mixture-fraction probability density functions is considered. Since a DNS is
not feasible for the present flow, statistics are compared with respect to grid spacing
and measurements from experiments.

It is expected that for relatively coarse resolutions, where a significant fraction of
the turbulent motions and kinetic energy is not resolved, the modelling error is larger.
As the grid is refined in a self-consistent LES—SGS scheme, the modelling error should
become smaller. However, it may not continue to decrease with increasing resolution.
Moreover, the behaviour of turbulence statistics as the grid is refined is expected to
vary for different models and numerical discretizations (Pope 2004a).

Table 2 shows a comparison of the cell size with the Kolmogorov, ig, and
Liepmann-Taylor, Ar, (Dimotakis 2000) scales for the three cases of the refinement
study. The Liepmann-Taylor scale is an estimate for the thickness of the internal
laminar layers of the shear layer. The Kolmogorov and Liepmann—Taylor scales are
estimated from the Reynolds number of the flow as defined in (5.1),

Jx = hRe ™%, (6.1)
and
Jr=5.0hRe V2 (6.2)

The coarsest simulation has grid cells that are almost 800 times larger than the
smallest flow scales, while the grid cells at the finest resolution are 200 times larger
than the smallest flow scales. In the highest resolution run, At is of the order of the
cell size. For all simulations, the SGS cutoff length is taken equal to the grid spacing.
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Case Al A2 A3
Re 3.8 x10° 3.8 x10° 3.8x10°
Number of cells 0.7 x 10° 5.4 x 10° 43.1 x 10°
Ax/h 1/20 1/40 1/80
Ax/ix 770 385 192
Ax /i 6.2 3.1 15

TaBLE 2. Ratio of grid spacing to the Kolmogorov, /x, and Liepmann-Taylor scale, Ar.
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0.05 0.2 035 0.5 0.65 08 095

FIGURE 9. Mean scalar fields for Cases A1-A3. Black contour corresponds to the value of zero
streamwise velocity, with flow moving upstream in regions between the black contour and the
bottom wall. Case Al, the lowest resolution simulation, predicts a longer mean recirculation
zone.

The computed mean quantities for Cases A1-A3 are different, with Case Al, the
coarsest grid, exhibiting the largest variation between them, while Cases A2 and A3
agree well. The grid for Case Al is too coarse to accurately capture the flow, a fact
that is illustrated by the mean length of the recirculation region shown in figure 9.
The mean reattachment point is 14 step heights downstream of the splitter plate in
Case Al, whereas in Cases A2 and A3 it is at x =9 and x =8.5, respectively. The
differences in the simulated mean flow fields yield different mixture-fraction fields as
shown in figure 9.

Figure 10 provides a more detailed picture of the flow and supports the observation
that mean profiles converge as the grid is refined, with Cases A2 and A3 in relatively
good agreement with each other. Note that dependence on grid spacing of the profiles
is not the same for all quantities. The streamwise velocity, u, is less sensitive than
the mixture-fraction, Z, for example. As a consequence, agreement in u# does not
necessarily imply agreement in the mean Z, as can be seen for Cases A2 and A3 in
figure 10.

In Appendix A, an analysis of mean profiles with respect to the length of the
time interval over which the averaging is performed is carried out. The results
of Appendix A indicate that the differences between grid resolutions cannot be
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FiGURe 10. Mean profiles for Cases A1-A3 at different streamwise locations, from (a) to (¢)
x =4, 8 and 16. Dash-dot lines correspond to Case A1, lowest resolution; dashed lines to Case
A2, medium resolution; solid lines to Case A3, highest resolution.

attributed to variations attributable to insufficient convergence of the mean, but to
differences resulting from grid resolution.

Turbulent kinetic energy profiles (TKE) are shown in figure 11. At x =4, the flow is
essentially a free-shear layer of small thickness relative to the grid spacing. The total
(resolved plus subgrid) TKE profile of the highest resolution case at x =4 differs from
the two other cases, suggesting that the primary shear layer near the origin may not
be sufficiently resolved by grids Al and A2. At the other two streamwise locations,
TKE profiles can be seen to converge towards the profile of Case A3.

The ratio of the subgrid TKE, as estimated by the stretched vortex SGS model, to
the total TKE is also shown in figure 11. At all three streamwise locations shown,
the TKE ratio decreases monotonically with increasing resolution to less than 5 %
for the finest resolution case.

The profiles in figures 9—11 indicate that Case Al is under-resolved, even in an LES
sense, whereas Cases A2 and A3 appear to capture the flow more accurately. This
conclusion is also supported by the comparison to the experimental data discussed
in §6.3. Accepting the results of Case A2 as sufficiently accurate, a criterion can be
formulated for a resolution requirement for the current LES. Note that computational
cost increases by a factor of 16 when the grid resolution is doubled. Using the
information in figure 11, it can be inferred that a sufficiently resolved simulation
requires a ratio of subgrid to total TKE of less than 20 %. This conclusion is in
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FiGURE 11. Turbulent kinetic energy (subgrid plus resolved), ratio of turbulent kinetic energy
to subgrid turbulent kinetic energy and passive-scalar variance for Cases A1-A3 at different
streamwise locations, from (a) to (¢) x =4, 8 and 16. Dash-dot lines correspond to Case Al,
lowest resolution; dashed lines to Case A2, medium resolution; solid lines to Case A3, highest
resolution.

agreement with LES resolution requirements discussed by Pope (2004b, § 13.7). As a
consequence of Sc=1 in the LES, the same resolution requirement holds for passive
mixing, i.e. a ratio of subgrid to total mixture-fraction variance less than 20 % for
reliable prediction of mixing.

The fact that the ratio of subgrid to total TKE and mixture-fraction variance
is estimated from the LES model and can vary for different SGS closures is a
limitation of the analysis. DNS data or measurements can be used to overcome
this limitation. However, simulations and measurements present severe challenges in
complex high-Reynolds-number flows. Despite this limitation, the process of model
validation can help reduce and quantify the uncertainties associated with estimates of
subgrid quantities. In a comparison of turbulence statistics corrected for the subgrid
contribution, Pantano et al. (2008) reported good agreement in an LES of a turbulent
wall-bounded flow with the corresponding DNS data using the stretched-vortex
model.

Because of the underlying modelling assumptions in LES, it is expected that a
prerequisite for this criterion is the resolution of all significant flow features, such as
relatively thin turbulent interfaces encountered in strongly stably stratified flows and
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features that are directly generated by the boundary conditions of the problem. The
resolution criterion discussed here implies that the accuracy of the LES prediction
becomes independent of the size of the smallest scale in the flow provided a minimum
fraction of the TKE is resolved.

6.1. Mixture-fraction probability density functions
Mixture-fraction p.d.f.s contain the full single-point statistical information of
Z(t,x,y,z). The passive-scalar p.d.f., (Z;x, y), can be used to obtain expectations
of quantities that depend on mixture fraction such as the chemical product fraction
and the temperature rise, or be directly used to study the characteristics of mixing.

Unfortunately, the actual p.d.f. cannot be constructed from the resolved fields of
the LES alone because the value of Z in each cell represents only the volume average,
yielding only the first (mean) and zeroth (normalization) moments of the passive-
scalar p.d.f. Additional information about the subgrid p.d.f. is required. In estimating
the total (resolved-scale plus contribution from subgrid scales) p.d.f., one approach is
to assume a functional form of the SGS scalar distribution and match the low-order
statistics that are available from the resolved field (e.g. Williams 1985; Peters 2000).
This is called the presumed-shape p.d.f. approach.

One of the most widely used distributions for the SGS p.d.f. is the beta distribution
(Cook & Riley 1994; Jimeénez et al. 1997). For the construction of the total p.d.f,
it is assumed that, independent of location in the flow, the subgrid p.d.f. can be
approximated by a beta distribution. The mixture-fraction mean and variance, as
estimated by the SGS model in each grid cell, are used to parameterize the SGS
distribution.

The procedure of computing the total p.d.f. follows Hill, Pantano & Pullin (2006).
The resolved-scale p.d.f. is the (normalized) histogram of Z realizations. As with the
computation of mean quantities, p.d.f.s are functions of x and y, and realizations in
span and time at (x, y) are used to construct P(Z;x, y). The SGS p.d.f, ?ggs(z t, x),
is formally defined as the Favre-p.d.f. of Z (Bilger 1975, 1977), such that for any
function f(Z),

F(Z,t,x)= /f(Z) Ps(Z, 1, x) dZ. (6.3)

The relationship between the total and subgrid p.d.f. is further discussed by Gao &
O’Brien (1993) and Hill et al. (2006).

Although the filtered scalar equation (4.6) must, ideally, observe the boundedness of
the scalar field, 0 < Z < 1, as does the exact scalar-transport equation (e.g. Dimotakis &
Miller 1990), the approximation of the subgrid scalar flux and the numerical
discretization do not preclude the generation of scalar values outside the interval
[0, 1]. This is found to be the case for the present simulations. While the observed
scalar out-of-bounds excursions occupy a small fraction of the volume, they are
unphysical and the result of modelling error. Because the out-of-bounds scalar
excursions do not occur uniformly in the computational domain, ignoring the
problematic values would introduce a normalization error and bias in the statistics.
Therefore, scalar values Z <0 and Z > 1 were placed in the smallest and largest bins,
respectively, preserving probability normalization. Further details and statistics of the
excursions are provided in Appendix B.

Each panel of figure 12 shows p.d.f.s along the transverse direction for Case A3 at
fixed x. In these plots, the y axis is the transverse coordinate. Any constant-y transect

corresponds to 2(Z;x, y).
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FIGURE 12. Mixture-fraction p.d.f.s for Case A3 at different streamwise locations. Each panel
shows p.d.f.s along the transverse direction. Grey-scale contours correspond to the total p.d.f.
whereas black contours to the resolved-scale. Both contour sets have identical increments. The
differences between the total and resolved-scale p.d.f.s were found to be small for all cases
simulated.

In all simulations performed, the difference between the resolved-scale and total
p.d.f.s was found to be small and traceable to the small values of subgrid variance
predicted by the LES model (see also figure 11).

The characteristics of the p.d.f.s change with the streamwise coordinate. At x =4,
the effect of the recirculation zone results in distributions of mixed fluid near the
bottom wall (y =0). With increasing y, there is a region where mostly pure bottom-
stream fluid (Z =0) is found (see figure 9), while for larger y only pure top-stream
fluid is present. All low-speed fluid (initially, Z = 0) has been mixed by x = 8.

The p.d.fis at x =8, the approximate location of mean reattachment, show that the
mixture becomes more homogeneous near the bottom wall than at the centre of the
duct, with the most probable value moving towards lower values of Z for increasing
y. This can be attributed to the fact that, as seen in figure 9, pure bottom-stream
fluid, although not present near the bottom wall, can be found at y=0.5 up to x =4.
Moreover, fluid near the bottom wall in the recirculation zone is moving at low
speeds, resulting in larger Lagrangian times for fluid elements that allow the mixture
to become more homogeneous.

Downstream of the mean reattachment, at x = 16, pure top-stream fluid occupies a
small fraction of the height while the p.d.f.s appear more narrow with larger means.

6.2. Velocity and mixture-fraction spectra

Two types of spectra were computed: spatial spectra along the statistically
homogeneous spanwise direction and temporal spectra using time traces at fixed
locations in space.

Spatial one-dimensional spectra for the three components of velocity and mixture
fraction are shown in figures 13 and 14. The spectra were calculated by taking
the ensemble average of one-dimensional spectra for many flow realizations. The
results for the medium resolution Case A2 show effects of aliasing at the highest
wavenumbers. Aliasing is found to decrease considerably for the high-resolution
Case A3, with the exception of the spanwise velocity spectrum (figure 14). Aliasing
in the one-dimensional spectrum of the velocity component in the direction of the
transform is commonly observed in different flows and can be attributed to the
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FIGURE 13. One-dimensional mixture-fraction (a) and streamwise velocity spectra at x =6.
Spectra were computed along the statistically homogeneous spanwise direction. Solid lines
correspond to Case A3 and dashed lines to Case A2. Three sets of spectra are shown at
y=0.2, 0.6 and 1. For clarity, the spectra at y=0.6 and y =1 were shifted upwards by one
and two decades, respectively.
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FIGURE 14. One-dimensional v-velocity (solid line) and w-velocity spectra at x =6 and y =6.

implementation of the stretched-vortex model and numerical method, which remain
current topics of research.

Temporal mixture-fraction spectra are shown in figure 15. The time trace records
were windowed using a 25 % cosine taper (Tukey) window (Harris 1978), since the
trace is not periodic. The resulting spectra were subsequently smoothed using a one-
third octave Gaussian filter. The time traces are well resolved in time compared with
the spatial fields, as a result of the small time steps in the LES because of the CFL
condition requirement. This difference is responsible for the observed difference in
behaviour between the temporal and spatial spectra at high wavenumbers.

6.3. Comparison with experimental data

Results from Cases A1-A3 are compared against the measurements reported by
Johnson (2005). The bottom-stream velocity in Cases A1-A3 corresponds to the case
U, =11 ms~! of Johnson (2005). The comparison is in terms of the pressure coefficient
along the bottom and top guide walls, the temperature rise for two equivalence ratios
and the probability of mixed fluid. Since heat release effects are small and neglected
in the simulations, pressure-coefficient data are compared with those of non-reacting
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FiGURE 15. Temporal mixture-fraction spectra at mid-span and x =6. (a) Spectra at y=0.2
(dashed-dot line), y =0.6 (dashed line) and y=1 (solid line). (b) The difference between the
raw and smoothed spectrum.
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FIGURE 16. Comparison of pressure coefficient along the bottom (solid line, filled circles) and
top (dashed line, open circles) guide walls. Lines correspond to Case A3 of the simulations
and circles to the experiments of Johnson (2005).

experiments and the mixing to low-heat release chemically reacting flow cases. The
pressure coefficient, a non-dimensional measure of pressure recovery, is defined as

C, = ’1’;”;. (6.4)
5P Ui

Quantities with subscript 1 correspond to top-stream means at x =0.

The pressure coefficient comparison is shown in figure 16. The agreement between
the predicted flow and the measured is satisfactory with two main differences. The
pressure coefficient in the simulation is positive throughout the computational domain,
whereas in the experiment the flow appears to accelerate downstream of the splitter
plate before recovering pressure after the reattachment of the primary shear layer.
This may occur because of the different shape or position of the primary shear layer.

The second and most important difference is the length of the recirculation zone.
In the experiments, the mean length is about one step height less than the simulation,
a trend observed in all simulations. This can be explained by a mismatch in the
virtual origin of the primary shear layer between the experiments and simulations. In
the LES, the shear layer does not develop three-dimensional fluctuations until some
distance downstream of the splitter plate, owing to the length needed for instabilities
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FIGURE 17. Comparison of normalized temperature rise for H, rich (¢ =1/8) and F, rich
(¢ =8) and probability of mixed fluid at x =7.8. Case Al: dashed-dot lines; Case A2: dashed
lines; Case A3: continuous lines; Symbols: experimental measurements.

to develop. On the other hand, in the experiments, the (initial) state of the shear layer
is quite different when it separates from the splitter plate. The fluctuations in the
boundary layer upstream of the splitter plate, the separation of the flow at the top of
the inclined ramp and the effect of the jets emanating from the perforations of the
ramp contribute to a different initial condition for the shear layer. Previous studies
have shown that growth rate in free-shear layers is sensitive to inflow conditions
(e.g. George 1989; Slessor et al. 1998). These effects are not modelled in current
simulations and, as a consequence, the virtual origin and growth rate are expected
to differ from the experiments. Unlike simulations of free-shear layers and jets, the
virtual origin is not a free parameter here because the origin of the secondary shear
layer is fixed by the experimental geometry.

The p.d.fis of mixture fraction are used to estimate the temperature rise. At a
particular mixture fraction, the relative amount of product is given by

Z
— for 0<Z < Z,,
¢

11—z
1-2,

Y,(Z:Zy) = (6.5)

for Z, <Z <1,

assuming complete consumption of the lean reactant. At the stoichiometric mole
fraction,

o= P
$+1
reactants are completely consumed, where ¢ is the stoichiometric mixture ratio defined
as the volume (number of moles) of high-speed fluid that carries sufficient reactants
to completely consume a unit volume (mole) of low-speed fluid (Dimotakis 1991).
The temperature rise normalized by the adiabatic flame temperature rise, AT, can
then be computed by

(6.6)

AT(y; )

1 ~
== g :
ar 2 = [ vz w2y az. (67)

Figure 17 shows the comparison of the normalized temperature rise for H,-rich
(¢ =1/8) and F,-rich (¢ =8) conditions at x =7.8.

The probability of mixed fluid is defined as the integral of the mixture-fraction p.d.f.
ignoring the contribution from the values near Z = 0 and Z = 1 that correspond to
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pure (unmixed) fluid (Koochesfahani & Dimotakis 1986; Slessor et al. 1998),

1—e

Pu(y) = P(Z,y)dZ. (6.8)

€

The limit of integration € for the ‘flip’ experiment is

1

et (6.9)

with ¢y =28 in this case.

The probability of mixed fluid can now be computed from the constructed Z
distributions from the LES. In the experiments, this is estimated from the measured
temperature rise (Dimotakis 1991; Slessor et al. 1998)

1 1
Pa0) > T | 0Zi6 = U8)+ ¥, Zi0 =8N 22,342 (6.10)
o1 AT(y) AT(y)
T 14 1/¢0 ATy y_iss ATy ¢=f;| ‘ (1D

Differences between the measured profiles of temperature rise and the ones
calculated from the LES are mainly found near the bottom wall. The streamwise
location where the profiles are recorded is near the mean reattachment of the primary
shear layer. In this region, the flow varies strongly with time and uncertainties in
the measurements are larger. Measurements show that the probability of mixed
fluid decreases near the bottom wall, in contrast with simulation predictions. In the
simulations, because of the reattachment of the primary shear layer, mixed fluid can
be found near the bottom wall; therefore, the probability of mixed fluid increases
with decreasing distance from the bottom wall. The experiments show an opposite
trend: the probability of mixed fluid decreases near the bottom wall. The difference
in the trend of the profiles cannot be explained by available information from the
experiments.

7. Effects of variable mass-injection ratio

The pressure distribution and the overall pressure recovery in the expansion-ramp
geometry can be controlled by varying the mass-injection ratio of the two streams.
The flow configuration can be adjusted between a nozzle, where a high mass-injection
ratio can cause the top stream to accelerate through the geometry, and a diffuser for
low mass-injection ratios.

Cases B2 and C2 investigate the effects of variable mass injection by keeping the
top-stream velocity constant, U; =170 m s~!, and varying the bottom-stream mass
fluxes. The bottom-to-top mass-flux ratio in Case C2 is about double that in B2. The
LES captures the change in the character of the flow from low to high bottom-stream
mass flux (see figure 18). The flow indicated in the bottom panel of figure 18, Case C2,
between the splitter plate and reattachment is very similar to a free-shear layer.

The difference between the low- and high-injection cases is also illustrated by the
mean mixture-fraction fields of figure 19. For low injection, the bottom-stream fluid
is mixed by five step heights on average, whereas in the high-injection case, pure
bottom-stream fluid can be found up to x =8.
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FIGURE 18. Instantaneous mixture-fraction fields for Cases B2 and C2 along mid-span. Case C2
has about twice the mass-flux ratio of bottom/top stream resulting in different characteristics
of the flow in the recirculation zone.
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FIGURE 19. Mean mixture-fraction fields for Cases B2 and C2.

7.1. Mixture-fraction probability density functions

The change in the flow field between low and high mass-injection ratios produces large
differences in mixture-fraction p.d.fs, as shown in figure 20. The differences in the
p.d.f.s are primarily a consequence of the change in the character of the recirculation
of mixed fluid near the bottom wall. This is most notable near x =8, the location of
mean reattachment for Case B2.

At low injection, mixed fluid can be found in the bottom half of the duct, whereas
at high injection, apart from very close to the bottom wall, fluid remains unmixed
below the primary shear layer. Moreover, for the low-injection case, the composition
is more homogeneous, as illustrated by the p.d.f.s at x=8 and x =12 in figure 20.
In this respect, the recirculation zone and the presence of the secondary mixing layer
are successful in enhancing mixing by producing narrower (smaller-variance) p.d.f.s
of mixture fraction in the bottom half of the duct.

7.2. Comparison with experimental data

The comparison of mixing statistics for Cases B2 and C2 is shown in figures 21
and 22, respectively. Normalized temperature-rise profiles are compared against the
experimental measurements for ¢ =1/8 and ¢ =8 at two streamwise locations, x =7.2
and x =9.4. The upstream location is inside the mean recirculation region for both
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FiGUure 20. Total (resolved-scale plus subgrid contribution) mixture-fraction p.d.f.s for Cases
B2, low injection (a—c), and C2, high injection (d—f'), at three streamwise locations. Contours
are drawn at identical intervals in all panels.

cases, whereas the downstream location is after reattachment for the low-injection
case and at about the mean reattachment location for the high-injection case.

Examination of experimental estimates of the probability of mixed fluid shows that
the transverse extent of the mixing zone is not growing between the upstream and
the downstream locations. For Case C2, it appears to be contracting. This can be
attributed to the presence of a separation bubble on the top guide wall that can
displace the top stream downwards, decreasing the adverse pressure gradient away
from the separation wall and decreasing the height of the mixing zone.

The comparison of the pressure coefficients is shown in figure 23. As discussed above
and similar to Case A3, the LES somewhat overpredicts the mean reattachment length.
Increased mass-injection moves the mean reattachment downstream, as can be seen
from the C, profiles. This effect appears to be more pronounced in the simulations
than in the experimental measurements.

8. Discussion

As can be inferred from the comparison with experiment, the most important
modelling simplification in the current study is the treatment of walls as no-stress
boundaries. The experiments show that the flow can separate on the top wall in the
adverse pressure gradient region following the reattachment of the primary shear
layer. Although this behaviour cannot be reproduced in the simulations that rely on
the particular boundary conditions adopted here, the level and location of mixing is
in agreement with the experiments.
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FiGURE 21. Normalized temperature rise and probability of mixed fluid for Case B2. (a—c) The
upstream rake location, x =7.2; (d—f) the downstream rake location, x =9.4. Experimental
measurements are indicated by symbols.

The dominant characteristic of the flow in the expansion ramp geometry is the
unsteady large-scale structures, and the interaction with each other and the walls. The
separation bubble is also very unsteady, as confirmed by animations of the simulated
flow with a time dependence that is in phase with the shear layer large-scale structures,
rather than a quasi-steady separation induced by the mean pressure gradient.

The separation criterion for a turbulent boundary layer of Stratford (1959) can
be applied to the mean flow field of the simulations to assess separation of the flow
due to the mean pressure gradient. This separation criterion relates the change in the
pressure coeflicient, C,, to the Reynolds number of the boundary layer, Re, =U x/v,
and for Reynolds numbers of the order of 10° reads,

1

2

C, <xdcf'> = 0.39 (10 5Re, ), (8.1)
dx

when d?p/dx2 >0 and C » < 4/7. The origin of the streamwise coordinate is taken at

x =0 in the LES.

The separation criterion of Stratford does not predict separation for any of
the computed mean pressure distributions on the top guide wall. The induced
instantaneous adverse pressure distribution on the walls is more severe than the
pressure gradients of the mean field. Unsteady-flow effects are therefore more
important than the mean pressure gradient, and a proper treatment of the boundary
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FIGURE 22. Normalized temperature rise and probability of mixed fluid for Case C2. (a—c) The
upstream rake location, x =7.2; (d—f) the downstream rake location, x =9.4. Experimental
measurements are indicated by symbols.

0.2 0.2
o'
- koY

Or _.0@ 0

G el
-0.2 -0.2
0 5 10 15 0 5 10 15
X X
Case B2 Case C2

FIGURE 23. The pressure coefficient on the bottom and top guide walls for Cases B2 and C2.
Symbols correspond to a pair of experiments at the same conditions.

layers would be required to accurately predict the response of the turbulent boundary
layer and the separation/reattachment in a spatio-temporally varying flow field.

One of the main results in this study is the prediction of the total mixture-fraction
p.d.f. by correcting resolved-scale p.d.f.s with the contribution from a presumed
distribution for the subgrid field. For all cases simulated, the ratio of the subgrid
to total variance was found to be small and, as a consequence, total p.d.f.s are well
approximated by the resolved-scale p.d.f.s. This, in combination with the agreement
between the predicted and measured probability of mixed fluid, implies that the
resolved p.d.f.s provide a good representation of the true distribution of the mixture.
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Although this conclusion may hold for flows with Schmidt numbers of order
unity, like the one simulated here, subgrid moments and shape of the p.d.f. can
become of greater importance as the Schmidt number and the fraction of the scalar
spectrum and variance represented by the SGS model increase. Hill et al. (2006) also
concluded that the contribution of the subgrid scalar variance was small compared
with the resolved counterpart in simulations of Richtmyer—Meshkov instability using
the stretched vortex LES—SGS model. They also incorporated the effects of variable
Schmidt number and found relatively small changes in the shape of the p.d.f. with
respect to the Schmidt number due to the logarithmic dependence of the subgrid
variance on Schmidt number.

The accurate prediction of the mixture-fraction p.d.f.s by the LES puts forward an
important question pertinent to LES models. How a method that does not resolve
the process of mixing is able to accurately predict mixing p.d.f.s? Accurate prediction
of mean quantities is well established but capturing the shape of the p.d.f. implies
accurate prediction of additional moments. The resolution of this question is likely to
be found in the way the p.d.f. is constructed. The p.d.f. at a given location in the flow
is essentially the histogram of mixture-fraction realizations at that point; in other
words, all p.d.f.s reported in this study are Eulerian p.d.f.s. Accordingly, the p.d.f.
is the statistical measure of the random sequence of mixture-fraction realizations at
that location. If the computed p.d.f. agrees with the experimental measurements, it
implies that the two random sequences, one from the LES and the corresponding
from experiment, have similar statistical properties. Consequently, resolution of the
finest scales may not always be required in predicting the Eulerian p.d.f.

9. Conclusion

The flow field and mixing in an expansion-ramp geometry was studied using LES
with SGS modelling employing the stretched-vortex model. The predictions of the
LES were compared against the experimental measurements of Johnson (2005) and
Bergthorson et al. (2009) and found to be in good agreement. Mixing was studied
by tracking a passive scalar, without taking into account the effects of chemical
reactions and heat release, an approximation expected to be adequate in modelling
the experiments conducted in parallel.

The simulations reported in this work address some of the difficulties of predicting
turbulent mixing in high-Reynolds-number complex flows. Owing to practical
limitations of computational resources, simulations of these types of flows rely heavily
on modelling simplifications. One of the main goals of this work was to identify these
sources of error and assess their effect on the prediction of molecular mixing.

Dependence of the predictions on resolution was investigated by performing
simulations at three resolutions, doubling the resolution each time. The mean fields
and mixture-fraction p.d.f.s exhibit good resolution independence for the two finer
grids used. In this flow, acceptable results were obtained when the ratio of subgrid to
total turbulent kinetic energy is less than 0.2. A similar ratio of the subgrid to total
passive-scalar variance was found.

As was observed in the experiments of Johnson (2005) and Bergthorson et al.
(2009), the recirculating flow between the ramp and the reattachment of the primary
shear layer is captured in the LES, together with the secondary shear layer at the
base of the ramp where fluid mixed in the primary shear layer is further diluted by
pure bottom-stream fluid. The magnitude of the velocity of upstream-moving flow
near the bottom wall is 10 %—15 % of the top free stream for mass-injection ratios of
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about 1/10, but becomes negligible as the flow tends towards a free-shear layer for
higher mass-injection ratios of about 1/5.

The mean reattachment length of the primary shear layer is somewhat overpredicted
by the simulations, a result that can be attributed to the longer length required for
transition of the primary shear layer to a three-dimensional state in the simulations
compared to experiments.

Total (resolved-scale plus subgrid contribution) mixture-fraction p.d.f.s were
estimated using a presumed beta-distribution model for the subgrid scalar field.
P.d.f:s derived from the simulations represent a statistic that is not (directly) available
from experiment and provided valuable insight into the progress of mixing in this
complicated geometry. The difference between the total and resolved-scale p.d.f.s was
found to be small, implying that most of the scalar variance is contributed by the
resolved fields rather than the subgrid component. This conclusion is in agreement
with the observations of Hill et al. (2006) in LES of Richtmyer—Meshkov instability.

Mixture-fraction p.d.f.s show the effects of the recirculating flow on the amount
of mixed fluid, with high probabilities of mixed fluid found in the bottom half of
the duct. This would not be possible with a free shear layer at similar free-stream
conditions at the same streamwise location. Moreover, pure bottom-stream fluid is
depleted within four step heights in the low-injection cases, and within eight step
heights in the high-injection case.

The most significant modelling simplification was the treatment of walls as stress-
free (free-slip) boundaries. As a consequence, the simulated flow cannot separate from
the top wall in the adverse pressure gradient region following the reattachment of
the shear layer. An analysis of the mean pressure fields showed that when separation
takes place it is likely attributable to flow unsteadiness rather than mean pressure
recovery.

Although the comparison of the LES results with the measurements is limited by
the treatment of walls as a slip boundary, this is a valuable assessment of the SGS
model as many of the characteristics of the flow are captured even in the absence of
boundary-layer modelling. The complex character of the flow allows the assessment
of the numerical method and SGS model in a realistic configuration.
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1-0389, by the Caltech DOE Advanced Simulation and Computing (ASC) Alliance
centre under subcontract No. B341492 of DOE contract W-7405-ENG-48, and NSF
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Meiron, Dale Pullin and Antonino Ferrante, for discussions. We would also like to
thank the Center for Advanced Computing Research at Caltech and the Livermore
Computing center at the Lawrence Livermore National Laboratory for technical
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Appendix A. Time variability of streamwise velocity and mixture fraction

Part of the success of large-eddy simulation in capturing turbulent flows is because
of the resolution of a significant fraction of the unsteady motions of the flow.
However, when mean fields are computed, information about the temporal and/or
spatial fluctuations is lost and the unsteady characteristics of the flow field can be of
importance for several applications. Another concern is the convergence of statistical
quantities such as means and p.d.f.s where a sufficiently large temporal and/or spatial
sample is required to obtain converged statistics.
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FIGURE 24. Contours of streamwise velocity (a, five contours from 0 to 100 m s~!) and
mixture fraction (b, five contours from 0.2 to 0.8) for Case A3. Each of the eight contour sets
corresponds to a spanwise-temporal average for distinct eighths of the total averaging time.

In order to explore these points, an approach similar to the one used in the analysis
of the time sequences of the experimental measurements is followed using data from
Case A3. The entire time interval used to compute the flow statistics is divided into
eight equal subintervals of length 0.02 s. For each subinterval mixture-fraction p.d.f:s
and mean velocity and mixture-fraction profiles are computed using spanwise and
temporal realizations of the flow. Results are shown in figures 24-26.

Means and p.d.fs differ among subintervals, with larger differences signifying time
variation of the corresponding flow field on time scales comparable to larger than the
length of the subintervals. The profiles of figure 25 are more representative of these
differences than the contours in figure 24, since the distance between the contour
sets of each subinterval additionally depends on the spatial gradient of the mean.
Convergence of the p.d.f.s requires a larger statistical sample, i.e. longer time intervals,
than the means of u and Z, and as a consequence, the p.d.f.s for each subinterval
(figure 26) appear less smooth than the mean profiles in figure 25.

Mixture fraction exhibits larger time-scale variations inside the recirculation region,
as shown in figure 25(a,d). This can account in part for the large variance of
the mixture-fraction p.d.f.s at x =4. Conversely, streamwise velocity profiles show
larger time-scale variation downstream of the recirculation region as a result of the
fluctuating length of the recirculation.

Differences in statistics between subintervals are relatively small, and given that
all statistics reported in this work are accumulated over § times the length of the
subintervals, one may infer that mean fields and p.d.f.s are adequately converged.

Appendix B. Mixture-fraction out-of-bounds excursions

In this appendix, the mixture-fraction undershoots and overshoots from range [0, 1]
are discussed in detail, especially with respect to the resolution scale.

Results for Cases A1-A3 show that the minimum and maximum of Z depend on
the resolution, as shown in figure 27. The absolute value of the excursions is found
to increase, as the grid is refined in the resolution range considered, with the finer
run exhibiting peak excursions reaching 50 %. This is attributed to a combination of
Gibbs oscillations introduced by the numerical discretization as well as to the effect
of the SGS model. Note that the fluid dynamic solver does not artificially clip the
extrema.
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FIGURE 25. Streamwise velocity (a) and mixture-fraction profiles at three streamwise locations
for Case A3. Each of the eight contour sets, denoted by different colour, corresponds to a
spanwise-temporal average for distinct eighths of the total averaging time.
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FIGURE 26. Probability density functions of resolved-scale mixture fraction at three streamwise
locations for Case A3. In each panel, eight p.d.f.s are shown using different colours. Each p.d.f.
is constructed from a distinct eighth of the total statistics-collection time period.
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FIGURE 27. Minimum and maximum values of the passive scalar as a function of time for
three different resolutions. Blue lines correspond to Case Al, lowest resolution; green to Case
A2, medium resolution; red to Case A3, highest resolution.
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FIGURE 28. Volume fraction of the undershoots of the passive scalar as a function of time for
three different thresholds and resolutions. Blue lines correspond to Case Al, lowest resolution;
green to Case A2, medium resolution; red to Case A3, highest resolution.
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FIGURE 29. Volume fraction of the overshoots of the passive scalar as a function of time for
three different thresholds and resolutions. Blue lines correspond to Case A1, lowest resolution;
green to Case A2, medium resolution; red to Case A3, highest resolution.

A measure of the error that is more useful than the local peak out-of-bounds
excursions is the volume occupied by scalar under/overshoots. This is shown in
figures 28 and 29 for three different thresholds at 1 %, 2 % and 5 % under/overshoot.
The volume fraction occupied by > 1 % excursions (sum of undershoot and overshoot
volume fraction) is about 3 %. If the tolerance is increased to > 5 %, the error as
a volume fraction becomes negligible. However, the error reported in figures 28 and
29 is actually a lower bound of the total error since it only accounts for excursions
that fall outside the range [0, 1]. Although the volume where unphysical values
are encountered is small, the presence of out-of-bounds mixture-fraction excursions
contaminates mixing statistics. For example, creation of fluid with Z = 1.1 corresponds
an excess amount of top-stream fluid. Fortunately, in the case studied here, Z is a
passive scalar and the uniform specific heat ratio and the uniform molar heat capacity
of the flow do not couple such out-of-bounds scalar excursions to the flow momentum
and energy.

Similar to the case of the minimum and maximum values of Z shown in figure 27,
the out-of-bounds scalar error does not decrease with increasing resolution. While
higher resolution might lead one to anticipate a reduction in errors, higher resolution
also increases the values of the peak local scalar gradients that drive the subgrid-scale
terms, amplifying the difficulty. One solution to this problem consists of utilizing a
mesh size that is finer than the cutoff scale of the LES (e.g. Chow & Moin 2003).
While this is theoretically possible, it is not computationally feasible for the present
flow.

The volume occupied by the undershoots is smaller than the overshoots. However,
this is likely a consequence of the flow configuration and not because of a peculiarity
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of the SGS model. The out-of-bounds excursions occur at the interfacial surface
between unmixed and mixed fluid and, therefore, scale with the surface area of such
encounters on the flow. As shown in figure 6, the surface area between mixed fluid
and top-stream fluid (Z=1) is always larger than that between Z >0 and Z=0.
This is a consequence of the (intentionally) unequal mass flux of the two streams in
the flow. The minimum and maximum of the excursions appear to be matched in
absolute value.

Although the out-of-bounds scalar excursions corrupt the mixing statistics, it
is important to appreciate the difficulty of the problem in combination with the
numerical modelling choices. In LES, practically all mixing occurs at scales far
smaller than the grid spacing. Even in the highest resolution run, the cell size is 200
times larger than the Kolmogorov diffusion scale. Moreover, the spatial discretization
introduces no numerical dissipation and no explicit filtering is performed, relying on
the SGS model for all fluid-dynamic dissipation and mixing, as mentioned above.
The combination of these factors allows the direct assessment of the mixing model
because there is minimal contribution to the mixing by the numerical scheme or by
‘numerical mixing’.

Statistics of out-of-bounds scalar excursions are not usually reported in the
literature; therefore, a detailed comparison with other numerical schemes and models
cannot be carried out. Cook, Cabot & Miller (2004), in LES of Rayleigh-Taylor
instability using a species SGS diffusivity specifically formulated to reduce out-of-
bounds excursions, report scalar excursions less than 1 %.
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